Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence.

Identifieur interne : 000028 ( Main/Exploration ); précédent : 000027; suivant : 000029

Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence.

Auteurs : Jana Key [Allemagne] ; Nesli Ece Sen [Allemagne] ; Aleksandar Arsovi [Allemagne] ; Stella Kr Mer [Allemagne] ; Robert Hülse [Allemagne] ; Natasha Nadeem Khan [Allemagne] ; David Meierhofer [Allemagne] ; Suzana Gispert [Allemagne] ; Gabriele Koepf [Allemagne] ; Georg Auburger [Allemagne]

Source :

RBID : pubmed:33023155

Abstract

Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson's disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently Nthl1-Ppat-Bdh2, but also mitochondrial Glrx5-Nfu1-Bola1, cytosolic Aco1-Abce1-Tyw5, and nuclear Dna2-Elp3-Pold1-Prim2. Incidentally, upregulated Pink1-Prkn levels explained mitophagy induction, the downregulated expression of Slc25a28 suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor Abce1 and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging.

DOI: 10.3390/cells9102229
PubMed: 33023155
PubMed Central: PMC7650593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence.</title>
<author>
<name sortKey="Key, Jana" sort="Key, Jana" uniqKey="Key J" first="Jana" last="Key">Jana Key</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sen, Nesli Ece" sort="Sen, Nesli Ece" uniqKey="Sen N" first="Nesli Ece" last="Sen">Nesli Ece Sen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arsovi, Aleksandar" sort="Arsovi, Aleksandar" uniqKey="Arsovi A" first="Aleksandar" last="Arsovi">Aleksandar Arsovi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kr Mer, Stella" sort="Kr Mer, Stella" uniqKey="Kr Mer S" first="Stella" last="Kr Mer">Stella Kr Mer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hulse, Robert" sort="Hulse, Robert" uniqKey="Hulse R" first="Robert" last="Hülse">Robert Hülse</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khan, Natasha Nadeem" sort="Khan, Natasha Nadeem" uniqKey="Khan N" first="Natasha Nadeem" last="Khan">Natasha Nadeem Khan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meierhofer, David" sort="Meierhofer, David" uniqKey="Meierhofer D" first="David" last="Meierhofer">David Meierhofer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gispert, Suzana" sort="Gispert, Suzana" uniqKey="Gispert S" first="Suzana" last="Gispert">Suzana Gispert</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koepf, Gabriele" sort="Koepf, Gabriele" uniqKey="Koepf G" first="Gabriele" last="Koepf">Gabriele Koepf</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Auburger, Georg" sort="Auburger, Georg" uniqKey="Auburger G" first="Georg" last="Auburger">Georg Auburger</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33023155</idno>
<idno type="pmid">33023155</idno>
<idno type="doi">10.3390/cells9102229</idno>
<idno type="pmc">PMC7650593</idno>
<idno type="wicri:Area/Main/Corpus">000024</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000024</idno>
<idno type="wicri:Area/Main/Curation">000024</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000024</idno>
<idno type="wicri:Area/Main/Exploration">000024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence.</title>
<author>
<name sortKey="Key, Jana" sort="Key, Jana" uniqKey="Key J" first="Jana" last="Key">Jana Key</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sen, Nesli Ece" sort="Sen, Nesli Ece" uniqKey="Sen N" first="Nesli Ece" last="Sen">Nesli Ece Sen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arsovi, Aleksandar" sort="Arsovi, Aleksandar" uniqKey="Arsovi A" first="Aleksandar" last="Arsovi">Aleksandar Arsovi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kr Mer, Stella" sort="Kr Mer, Stella" uniqKey="Kr Mer S" first="Stella" last="Kr Mer">Stella Kr Mer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hulse, Robert" sort="Hulse, Robert" uniqKey="Hulse R" first="Robert" last="Hülse">Robert Hülse</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khan, Natasha Nadeem" sort="Khan, Natasha Nadeem" uniqKey="Khan N" first="Natasha Nadeem" last="Khan">Natasha Nadeem Khan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meierhofer, David" sort="Meierhofer, David" uniqKey="Meierhofer D" first="David" last="Meierhofer">David Meierhofer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gispert, Suzana" sort="Gispert, Suzana" uniqKey="Gispert S" first="Suzana" last="Gispert">Suzana Gispert</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koepf, Gabriele" sort="Koepf, Gabriele" uniqKey="Koepf G" first="Gabriele" last="Koepf">Gabriele Koepf</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Auburger, Georg" sort="Auburger, Georg" uniqKey="Auburger G" first="Georg" last="Auburger">Georg Auburger</name>
<affiliation wicri:level="3">
<nlm:affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Francfort-sur-le-Main</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson's disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently
<i>Nthl1-Ppat-Bdh2</i>
, but also mitochondrial
<i>Glrx5</i>
-
<i>Nfu1</i>
-
<i>Bola1</i>
, cytosolic
<i>Aco1-Abce1-Tyw5</i>
, and nuclear
<i>Dna2</i>
-
<i>Elp3</i>
-
<i>Pold1</i>
-
<i>Prim2</i>
. Incidentally, upregulated
<i>Pink1</i>
-
<i>Prkn</i>
levels explained mitophagy induction, the downregulated expression of
<i>Slc25a28</i>
suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor
<i>Abce1</i>
and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">33023155</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4409</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E2229</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells9102229</ELocationID>
<Abstract>
<AbstractText>Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson's disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently
<i>Nthl1-Ppat-Bdh2</i>
, but also mitochondrial
<i>Glrx5</i>
-
<i>Nfu1</i>
-
<i>Bola1</i>
, cytosolic
<i>Aco1-Abce1-Tyw5</i>
, and nuclear
<i>Dna2</i>
-
<i>Elp3</i>
-
<i>Pold1</i>
-
<i>Prim2</i>
. Incidentally, upregulated
<i>Pink1</i>
-
<i>Prkn</i>
levels explained mitophagy induction, the downregulated expression of
<i>Slc25a28</i>
suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor
<i>Abce1</i>
and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Key</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Nesli Ece</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arsović</LastName>
<ForeName>Aleksandar</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krämer</LastName>
<ForeName>Stella</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hülse</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Natasha Nadeem</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meierhofer</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-0170-868X</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gispert</LastName>
<ForeName>Suzana</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koepf</LastName>
<ForeName>Gabriele</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Auburger</LastName>
<ForeName>Georg</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Experimental Neurology, Medical School, Goethe University, 60590 Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>01GS08138</GrantID>
<Agency>German Federal Ministry of Education</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>PTJ 0315584A</GrantID>
<Agency>GerontoMitoSys network</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>DLR 01EW1012</GrantID>
<Agency>European Union</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CPT1A</Keyword>
<Keyword MajorTopicYN="N">Cyp46a1</Keyword>
<Keyword MajorTopicYN="N">Hmox1</Keyword>
<Keyword MajorTopicYN="N">Ireb2</Keyword>
<Keyword MajorTopicYN="N">MMP14</Keyword>
<Keyword MajorTopicYN="N">PYGL</Keyword>
<Keyword MajorTopicYN="N">Pgrmc1</Keyword>
<Keyword MajorTopicYN="N">Slc11a2</Keyword>
<Keyword MajorTopicYN="N">Slc25a37</Keyword>
<Keyword MajorTopicYN="N">Tfrc</Keyword>
<Keyword MajorTopicYN="N">iron overload versus deprivation</Keyword>
<Keyword MajorTopicYN="N">neurodegeneration</Keyword>
<Keyword MajorTopicYN="N">nucleotide metabolism</Keyword>
<Keyword MajorTopicYN="N">synuclein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>1</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33023155</ArticleId>
<ArticleId IdType="pii">cells9102229</ArticleId>
<ArticleId IdType="doi">10.3390/cells9102229</ArticleId>
<ArticleId IdType="pmc">PMC7650593</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2004 Feb 27;336(4):917-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2016 Aug;22(8):879-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27400265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):1966-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21939754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2017 May 1;10(5):619-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2018 Jan 31;41(1):65-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29370695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jul 30;162(3):516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Jan 2;14(1):224-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25361611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 May;38(5):515-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16604074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Oct;75:69-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25048971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Cell Res. 2020 Jul;1867(7):118705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32199885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jul 24;5:4514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25058378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 8;285(41):31783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2016 Apr 15;473(8):961-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27060105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2011 Nov 15;310(1-2):112-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21683963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 May 15;29(10):989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25995186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Jan 29;18(2):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2007 Nov 15;16(22):2651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17597094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2012 Aug;46(1):20-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22350618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Sep 20;9(9):1193-1203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28795723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 11;292(32):13205-13229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28655775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2020 Apr;10(4):173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32206507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Dec 15;22(24):4871-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23851121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12754-12763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2014 Oct;88(10):1787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25119494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Jul 15;87(2):371-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26182419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2017;83:75-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28271473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sleep Med. 2008 Aug;9(6):684-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2010 Jul 29;116(4):628-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Sep 26;501(7468):512-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24005326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Sep;561(7722):258-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30135585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2018 Aug 20;46(4):441-455.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30100261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2020 Jun 20;89:471-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31935115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Aug 22;75(4):835-848.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31378462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurogenetics. 2012 Feb;13(1):9-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurodegener. 2009 Jul 23;4:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1990 Jul;55(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2355217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jun 03;4(6):e5777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19492057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2017 Nov;32(11):1631-1636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28881039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2020 Apr 21;14:267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32372896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 14;288(24):17791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23640898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2014 Apr;124(4):1699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24614105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2018 Feb;32(2):995-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29054856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Sep 29;292(39):16284-16299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28808058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2019 Sep;141:253-260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31233777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2017 Aug 2;14(1):154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28768533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Parkinsons Dis. 2013;3(4):523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24113558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Jun 3;409(2):241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21570952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Aug 4;12(2):194-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Oct 1;8(10):1032-1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27714045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2013 Jul;55:50-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22917739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2010;694:14-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20886753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):292-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Mar 2;1688(2):130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2007 Feb;25(2):401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2013 Apr 18;4:e592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23598404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Neurol. 2017 Jan;16(1):88-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27979358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2002 Feb;8(1):22-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11843096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm (Vienna). 2005 Oct;112(10):1345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15785866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Mar;11(3):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2013 Aug 01;5(8):a011312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23906713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2017 Dec;85:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28811225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jul 04;20(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31277379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Jul 20;25(14):1810-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26144971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Feb 21;27(8):1868-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2015;2015:769739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Feb 10;12(2):e0171925</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28187176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Dec 10;29(17):1756-1773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28793787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2015 Dec;20(8):1229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2017 Dec 20;8(12):2759-2765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28880525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 May 25;293(21):8297-8311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29523684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Genet. 2011 Aug 03;12:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21812969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Dec;132(24):5411-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 08;10(10):e0139699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26448442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2018 Jul 03;28(1):130-144.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29861391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:115-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Oct 08;20(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31597407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 21;9(4):e95288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24751806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1996 Jul;15(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health. 1992 Sep;106(5):393-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1410224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm Suppl. 2006;(71):201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2015 Jul;30(8):1026-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25952565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 10;10(11):e0142438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26555609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1162-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Apr;11(4):424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2018 Dec 11;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30544931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Sep;23(18):3582-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 2;440(7080):96-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16511496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Apr;8(4):385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2017 Jun;18(6):947-961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28381481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2020 Nov 5;532(2):285-291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32873392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Feb;29(4):1007-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm Suppl. 2006;(71):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1992;32 Suppl:S128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1510371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Nov 15;9(11):1483-1500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28879348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2008 Aug;212(2):307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 1992;50(26):2059-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1608289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23360988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1468-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22610083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Nov 7;27(45):12413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2004;10(8):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Jul 28;535(7613):561-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27383793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2010 Oct;40(1):82-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20483372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2015 Jan 6;21(1):95-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25565208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Mar 23;8(1):5118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29572489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Beijing Da Xue Xue Bao Yi Xue Ban. 2009 Aug 18;41(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 27;7(1):16441</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29180793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2012 Oct;90(10):1209-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22527885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2019 Mar 01;13:180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30881284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Sep 16;478(2):838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27510639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Apr;9(4):e1003478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 Jul;17:143-157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29689442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Feb 15;24(4):1061-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25296918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30476243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 11;282(19):14598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci Alliance. 2018 Jun 14;1(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30198020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leg Med (Tokyo). 2003 Mar;5 Suppl 1:S360-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12935634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2018 Dec;147(6):816-830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30380148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Mar;63(5):591-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16465450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2006 Mar 15;15(6):953-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2002 Oct;83(2):320-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theranostics. 2020 Jun 19;10(17):7775-7786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32685019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2018 Mar;19(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29420235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2019 Jan;15(1):172-173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30252570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29666</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol. 2007 May;254(5):613-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2011 Oct;91(4):1161-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 14;289(11):7835-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24509859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(13):3275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 10;6(1):e15814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21249223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 21;304(5674):1158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Nov 27;25(9):2447-2456.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30485811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Oct;6(7):952-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2016 Jul 07;14(7):e1002507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27389535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parkinsonism Relat Disord. 2010 Jun;16(5):329-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20219408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2016 Feb 15;592:60-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26785297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tohoku J Exp Med. 2007 Sep;213(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17785948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2009 Oct 1;18(19):3659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Dec;24(12):4977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20732954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2010 Apr;77(4):621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2016 Jul 1;1642:33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27017962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 21;6:24200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27097841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Clin Lab Sci. 2001 Apr;31(2):151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Oct;276(20):5768-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2019 Jul;56(7):4880-4893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30406908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2008 Dec 15;168(12):1381-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2014 Aug;56:221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2012 Nov;13(7):519-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23633912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Sep 20;55(37):5204-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27599036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2018 Jan;55(1):506-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27975167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2007 Jun 15;420(3):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 09;6:36669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27827408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Feb 16;293(7):2558-2572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29282292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Assoc Am Physicians. 1999 Sep-Oct;111(5):438-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10519165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Aug 14;12(8):e0183076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28806787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Feb 05;9:141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29459863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):48473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11585831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2010 Mar-Apr;36(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20232345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2017;595:83-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28882209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):42579-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 Feb;43(1):1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20860521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1853(5):1130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25661197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genomics Hum Genet. 2007;8:37-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17887919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 May;100:61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Nov 29;10(1):5463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31784520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Jul;571(7766):565-569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31316206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1272-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2010 Mar 17;166(2):422-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20045449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 15;123(Pt 6):917-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20179104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 20;18(18):2429-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23311711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22375032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2016 Mar-Apr;7(2):198-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26732699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2013 Dec;14(12):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24176932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parkinsons Dis. 2016;2016:4686185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27034888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 Oct;19:263-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30196190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Neurol. 1983;37:51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6344591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Haematologica. 2019 Sep;104(9):1756-1767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30765471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2019 Dec;132:104559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31376479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Feb 19;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30791479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Dec;41(6):1513-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256246</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
<li>District de Darmstadt</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Berlin</li>
<li>Francfort-sur-le-Main</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Key, Jana" sort="Key, Jana" uniqKey="Key J" first="Jana" last="Key">Jana Key</name>
</region>
<name sortKey="Arsovi, Aleksandar" sort="Arsovi, Aleksandar" uniqKey="Arsovi A" first="Aleksandar" last="Arsovi">Aleksandar Arsovi</name>
<name sortKey="Auburger, Georg" sort="Auburger, Georg" uniqKey="Auburger G" first="Georg" last="Auburger">Georg Auburger</name>
<name sortKey="Gispert, Suzana" sort="Gispert, Suzana" uniqKey="Gispert S" first="Suzana" last="Gispert">Suzana Gispert</name>
<name sortKey="Hulse, Robert" sort="Hulse, Robert" uniqKey="Hulse R" first="Robert" last="Hülse">Robert Hülse</name>
<name sortKey="Key, Jana" sort="Key, Jana" uniqKey="Key J" first="Jana" last="Key">Jana Key</name>
<name sortKey="Khan, Natasha Nadeem" sort="Khan, Natasha Nadeem" uniqKey="Khan N" first="Natasha Nadeem" last="Khan">Natasha Nadeem Khan</name>
<name sortKey="Koepf, Gabriele" sort="Koepf, Gabriele" uniqKey="Koepf G" first="Gabriele" last="Koepf">Gabriele Koepf</name>
<name sortKey="Kr Mer, Stella" sort="Kr Mer, Stella" uniqKey="Kr Mer S" first="Stella" last="Kr Mer">Stella Kr Mer</name>
<name sortKey="Meierhofer, David" sort="Meierhofer, David" uniqKey="Meierhofer D" first="David" last="Meierhofer">David Meierhofer</name>
<name sortKey="Sen, Nesli Ece" sort="Sen, Nesli Ece" uniqKey="Sen N" first="Nesli Ece" last="Sen">Nesli Ece Sen</name>
<name sortKey="Sen, Nesli Ece" sort="Sen, Nesli Ece" uniqKey="Sen N" first="Nesli Ece" last="Sen">Nesli Ece Sen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33023155
   |texte=   Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33023155" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020